|
ssmkit
master-68aed98
|
Stochastic Processes. More...
Classes | |
| class | BaseProcess |
| class | Hierarchical |
| A stochastic process constructed as hierarchy of stochastic processes. More... | |
| class | Markov |
| A first-order Markov process. More... | |
| class | Memoryless |
| A Memoryless (independent/white) random process. More... | |
Functions | |
| template<class... TArgs> | |
| Hierarchical< TArgs...> | makeHierarchical (TArgs...args) |
| A convenient builder for Hierarchical process. More... | |
| template<typename TPDF , typename TParamMap , typename TInitialPDF > | |
| Markov< TPDF, TParamMap, TInitialPDF > | makeMarkov (distribution::Conditional< TPDF, TParamMap > cpdf, TInitialPDF init_pdf) |
| Convenient builder for Markov process. More... | |
| template<typename TPDF , typename TParamMap > | |
| Memoryless< TPDF, TParamMap > | makeMemoryless (distribution::Conditional< TPDF, TParamMap > cpdf) |
| Convenient builder for Memoryless process. More... | |
Stochastic Processes.
| Hierarchical<TArgs...> ssmkit::process::makeHierarchical | ( | TArgs... | args | ) |
A convenient builder for Hierarchical process.
use this for template argument deduction.
| args | ... Process layers, see Hierarchical::Hierarchical |
| TArgs | ... Type of the process layers |
args... Definition at line 151 of file hierarchical.hpp.
| Markov<TPDF, TParamMap, TInitialPDF> ssmkit::process::makeMarkov | ( | distribution::Conditional< TPDF, TParamMap > | cpdf, |
| TInitialPDF | init_pdf | ||
| ) |
Convenient builder for Markov process.
Use this when you want to use type deduction
| init_pdf | Initial probability distribution \(p(\mathbf{x}_0)\) |
| cpdf | distribution::Conditional PDF characterizing inter time-slice dependency \(p(\mathbf{x}_k|\mathbf{x}_{k-1}, y^1_k, \cdots, y^N_k)\) |
init_pdf should provide random and likelihood methods. cpdf should be the same. The cpdf should have at least one condition variable. Definition at line 123 of file markov.hpp.
| Memoryless<TPDF, TParamMap> ssmkit::process::makeMemoryless | ( | distribution::Conditional< TPDF, TParamMap > | cpdf | ) |
Convenient builder for Memoryless process.
Use this when you want to use type deduction
| cpdf | distribution::Conditional PDF defining the process \(p(\mathbf{x}_k| y^0_k, \cdots, y^N_k)\) |
Definition at line 104 of file memoryless.hpp.