ssmkit  master-68aed98
ssmkit::process Namespace Reference

Stochastic Processes. More...

Classes

class  BaseProcess
 
class  Hierarchical
 A stochastic process constructed as hierarchy of stochastic processes. More...
 
class  Markov
 A first-order Markov process. More...
 
class  Memoryless
 A Memoryless (independent/white) random process. More...
 

Functions

template<class... TArgs>
Hierarchical< TArgs...> makeHierarchical (TArgs...args)
 A convenient builder for Hierarchical process. More...
 
template<typename TPDF , typename TParamMap , typename TInitialPDF >
Markov< TPDF, TParamMap,
TInitialPDF > 
makeMarkov (distribution::Conditional< TPDF, TParamMap > cpdf, TInitialPDF init_pdf)
 Convenient builder for Markov process. More...
 
template<typename TPDF , typename TParamMap >
Memoryless< TPDF, TParamMap > makeMemoryless (distribution::Conditional< TPDF, TParamMap > cpdf)
 Convenient builder for Memoryless process. More...
 

Detailed Description

Stochastic Processes.

Function Documentation

Hierarchical<TArgs...> ssmkit::process::makeHierarchical ( TArgs...  args)

A convenient builder for Hierarchical process.

use this for template argument deduction.

Parameters
args... Process layers, see Hierarchical::Hierarchical
Template Parameters
TArgs... Type of the process layers
Returns
Hierarchical process object build from args...
Precondition
See Hierarchical::Hierarchical

Definition at line 151 of file hierarchical.hpp.

Markov<TPDF, TParamMap, TInitialPDF> ssmkit::process::makeMarkov ( distribution::Conditional< TPDF, TParamMap >  cpdf,
TInitialPDF  init_pdf 
)

Convenient builder for Markov process.

Use this when you want to use type deduction

Returns
Markov process object
Parameters
init_pdfInitial probability distribution \(p(\mathbf{x}_0)\)
cpdfdistribution::Conditional PDF characterizing inter time-slice dependency \(p(\mathbf{x}_k|\mathbf{x}_{k-1}, y^1_k, \cdots, y^N_k)\)
Precondition
init_pdf should provide random and likelihood methods.
The type of the random variable and the first condition variable of cpdf should be the same. The cpdf should have at least one condition variable.

Definition at line 123 of file markov.hpp.

Memoryless<TPDF, TParamMap> ssmkit::process::makeMemoryless ( distribution::Conditional< TPDF, TParamMap >  cpdf)

Convenient builder for Memoryless process.

Use this when you want to use type deduction

Returns
Memoryless process object
Parameters
cpdfdistribution::Conditional PDF defining the process \(p(\mathbf{x}_k| y^0_k, \cdots, y^N_k)\)

Definition at line 104 of file memoryless.hpp.