ssmkit
master-68aed98
|
Stochastic Processes. More...
Classes | |
class | BaseProcess |
class | Hierarchical |
A stochastic process constructed as hierarchy of stochastic processes. More... | |
class | Markov |
A first-order Markov process. More... | |
class | Memoryless |
A Memoryless (independent/white) random process. More... | |
Functions | |
template<class... TArgs> | |
Hierarchical< TArgs...> | makeHierarchical (TArgs...args) |
A convenient builder for Hierarchical process. More... | |
template<typename TPDF , typename TParamMap , typename TInitialPDF > | |
Markov< TPDF, TParamMap, TInitialPDF > | makeMarkov (distribution::Conditional< TPDF, TParamMap > cpdf, TInitialPDF init_pdf) |
Convenient builder for Markov process. More... | |
template<typename TPDF , typename TParamMap > | |
Memoryless< TPDF, TParamMap > | makeMemoryless (distribution::Conditional< TPDF, TParamMap > cpdf) |
Convenient builder for Memoryless process. More... | |
Stochastic Processes.
Hierarchical<TArgs...> ssmkit::process::makeHierarchical | ( | TArgs... | args | ) |
A convenient builder for Hierarchical process.
use this for template argument deduction.
args | ... Process layers, see Hierarchical::Hierarchical |
TArgs | ... Type of the process layers |
args
... Definition at line 151 of file hierarchical.hpp.
Markov<TPDF, TParamMap, TInitialPDF> ssmkit::process::makeMarkov | ( | distribution::Conditional< TPDF, TParamMap > | cpdf, |
TInitialPDF | init_pdf | ||
) |
Convenient builder for Markov process.
Use this when you want to use type deduction
init_pdf | Initial probability distribution \(p(\mathbf{x}_0)\) |
cpdf | distribution::Conditional PDF characterizing inter time-slice dependency \(p(\mathbf{x}_k|\mathbf{x}_{k-1}, y^1_k, \cdots, y^N_k)\) |
init_pdf
should provide random
and likelihood
methods. cpdf
should be the same. The cpdf
should have at least one condition variable. Definition at line 123 of file markov.hpp.
Memoryless<TPDF, TParamMap> ssmkit::process::makeMemoryless | ( | distribution::Conditional< TPDF, TParamMap > | cpdf | ) |
Convenient builder for Memoryless process.
Use this when you want to use type deduction
cpdf | distribution::Conditional PDF defining the process \(p(\mathbf{x}_k| y^0_k, \cdots, y^N_k)\) |
Definition at line 104 of file memoryless.hpp.