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Abstract—A method for online incremental mining of activity
patterns from surveillance video stream is presented in this
paper. The framework consists of a learning block in which
Dirichlet process mixture model is employed for incremental
clustering of trajectories. Stochastic trajectory pattern models
are formed using Gaussian process regression of corresponding
flow functions. Moreover, a sequential Monte-Carlo method based
on Rao-Blackwellized particle filter is proposed for tracking
and online classification as well as detection of abnormality
during observation of an object. Experimental results on real
surveillance video data are provided to show the performance of
the proposed algorithm in different tasks of trajectory clustering,
classification and abnormality detection.

Index Terms—Incremental trajectory clustering, online ac-
tivity analysis, abnormality detection, state dynamics learning,
nonparametric Bayesian, Gaussian process, Dirichlet process
mixture.

I. INTRODUCTION

N recent years, the widespread usage of video cameras for

control and safety has made surveillance video a consistent
part of the global big data generated every day [1]. It is
infeasible to employ human operators for monitoring this huge
volume of data. Therefore, automated methods for continuous
analysis of surveillance video are required to achieve maxi-
mum efficiency of the deployed cameras. An automated video
analytic method must be able to learn the activity classes
in an environment and reply to queries about the activity of
a moving entity in real time. For a given environment, the
main queries are determining if the activity of an object is a
normal activity class for that environment or it is an abnormal
unobserved behavior.

An object’s activity can be defined as the sequence of
actions that makes the object move. These actions can be
observed through the object’s motion pattern. One way to
extract motion pattern information from video is to use optical
flow estimation as shown in [2] and [3]. However, the most
popular approach is to use tracking for forming trajectory
of objects then considering trajectories as motion pattern de-
scriptors. Consequently, trajectory learning and classification
become central tasks for any video analytics method.

Activity recognition can be seen as supervised or unsuper-
vised problem, on the basis of availability of labeled datasets.
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In supervised approaches such as [4]-[10], labeled data are
used for learning models of each trajectory pattern that are then
used for classification or abnormality detection purposes. On
the other hand, in unsupervised problems [11]-[15], the dataset
is unlabeled and the aim is to cluster similar trajectories and
then use the clustered data to train models for classification.
A particular class of unsupervised learning is incremental
clustering [15], in which training data are not available at
once and they have to be processed sequentially as new data
is received. This approach is particularly useful in surveillance
applications since it may not be feasible to have training
datasets for every camera. In this case, one would leave an
incremental clustering algorithm to process data streams from
cameras and make the system gradually learn and organize
activities it observes from the camera.

Whatever method is used for training, the learned models
of trajectory patterns can be employed for different purposes.
Some methods address only abnormality detection [16]-[18]
while others perform classification and abnormality detection
together [4], [8]. Trajectory retrieval [15] is another possible
application. An important property of an activity analyzer is
online classification and abnormality detection with partially
observed trajectories, which is addressed in [4], [8], [9]. This
is of great importance when timely actions are required in
response to a particular observed activity or abnormality.

The purpose of this paper is to propose a unified framework
for tracking, learning activities as trajectory patterns, online
classification and abnormality detection. The main contribu-
tions of this paper can be summarized as follows:

¢ Online incremental trajectory clustering algorithm based
on novel Bayesian nonparametric techniques.

o Online sequential trajectory classifier and abnormality
detector based on sequential Monte-Carlo techniques.

e Defining a framework in which learned trajectories is
used to improve visual object tracking.

The remainder of the paper is organized as follows: in Section
IT an overview of technically related works is presented and
differences of the proposed method with respect to the state-
of-the-art is highlighted. The background of the proposed
algorithm is presented in Section III. In Sections IV, V and VI
the proposed framework and related algorithms are presented
in detail. The experimental evaluation of the proposed method
is provided in Section VII and Section VIII concludes the

paper.
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II. RELATED WORKS

In this paper, a trajectory model based on flow functions
is introduced. This was first proposed in [5] using Switching
Dynamical Model (SDM) and extended in [6] and [9] to state
dependent SDM system. Alternatively, in [4] Gaussian Process
(GP) regression was used for modeling flow functions from
a stochastic viewpoint. In this paper, GP is used for trajec-
tory modeling because it allows high flexibility for learning
time-variant non-linear flow functions. However, the proposed
method of this paper is different form [4] in two ways.
Firstly, the proposed method is incremental and unsupervised,
which means no labeling is required from training data and
the model is always updated by receiving new trajectory
samples. Secondly, unlike [4], the trajectory classification and
the abnormality detection are now integrated into the object
tracker. Moreover, The integrated tracker uses the learned flow
function in the tracking process which improves the tracking
performance over time.

In completely unsupervised clustering problems, the num-
ber of data clusters is unknown. The Mean-shift clustering
algorithm [19] and Dirichlet Process mixture (DPM) model
[20] can be applied in such problems. In this paper, DPM is
used since it fits perfectly in a probabilistic framework and
it enables incremental clustering. The Mean-shift clustering
algorithm was used in [21] for trajectory clustering in multiple
feature spaces. DPM has also been deployed for the same
purpose in [12] as a mixture of hidden Markov models and in
[2] as mixture of temporal motifs. In both methods, DPM was
used in batch learning framework using a Gibbs sampling in-
ference technique, that is very slow in convergence and cannot
be applied for online usage. An incremental trajectory learning
method based on DPM is proposed in [15], where Discrete
Fourier transform (DFT) features were used to represent the
trajectory, then DPM was used as a mixture of DFT features
distribution. The method of [15] employs Gibbs sampling for
learning but it allows for sequential assignment of new batch
data. That approach is applied for trajectories’ retrieval, but
it cannot be used as an online trajectory classifier, since it
requires the whole trajectory to calculate DFT features and
identify trajectory classes. In contrast, a recently proposed
DPM variational inference technique [22] is used in our work
for learning purposes. The variational inference is faster and
is more efficient than Gibbs sampling. More importantly,
the DPM in our method defines a mixture of stochastic
flow functions, which make online sequential classification
possible.

The Rao-Blackwellized Particle Filter (RBPF) proposed in
this paper is a modified version of the technique proposed in
[23] for online parameter estimation. A preliminary version
of this method was proposed in [9] for supervised trajectory
classification, where trajectories were modeled as potential
functions instead of flow functions. Here, the method is
improved by extending it for unsupervised approaches, and
by modifying the algorithm to a flexible adaptive particle
sampling from mixture of flow functions.

The framework proposed in this paper is able to provide
unsupervised incremental clustering together with online clas-

TABLE I: Comparison with state-of-the-art

0% Lon Ho®
st o o Ct\ea“ﬁ&ca;:\w De\ec e
Method \S“S\“) “de(“ oni® NOROT g
Proposed v v v v v
DPM [15] v X b X
GP [4] X X v v X
SDM [9] X X v X 4
SDM [5] X X v X X
DPM [2] v X X X X
DPM [12] v X X X X
Mean-Shift [21] X X X X

* With batch initialization and batch increments

sification and abnormality detection embedded inside particle
filter tracker. These features have not been simultaneously
addressed in the literature despite they are interrelated and
necessary for truly intelligent video analytic system. Table I
outlines the comparison of the proposed method with related
references that partially addressed these features.

III. BACKGROUND

The purpose of this section is to introduce Gaussian process
regression and Dirichlet process mixture model which are used
in the proposed algorithm.

A. Gaussian Process Regression

A Gaussian Process (GP) defines a probability distribution
over functions f : X — R which maps a domain vector space
X to the real numbers R such that the marginal distribution of
vectorized function values I' = [f(x1),- - - , f(xn)]T over any
finite subset {x1,---,xy} C X has a multivariate Gaussian
distribution [24]. A GP, denoted f(x) ~ GP(f(x), k(x,x’)),
is characterized by a mean function f(x), which is usually set
to zero for notational simplicity, and a covariance function
k(x,x’) that encodes covariance of two values, f(x) and
7).

The GP is widely used as function prior in nonlinear, non-
parametric regression [25], and classification [26] problems.
Given a noisy training data set D = {X,T'} consists of
noisy function values I' = [f(x1), -+, f(xn)]T at the set
of points X = {x1,--+ ,xn}, the problem is to estimate the

values of function I'* = [f(x}), -+, f(xy)]* at a set of
new points X* = {xj,---,x},}. The observation process
is f(x) = f(x) + e(x) where f(x) has a GP prior and

e(x) ~ N(0,0) is a Gaussian zero-mean white noise process.
Since observation likelihood and the prior of function are
Gaussian, the predictive posterior distribution of function
values at new points remains a multivariate Gaussian with
mean vector

I :=E[*D] =K .[K,| +o2°'T (1)
and covariance matrix
C[L*|D] =E[(I* — T*)(I* — T*)7|D] o

=K, . - K, [K| +’IT'K .

K0
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where K, denotes a matrix whose element in ith row and
jth column is k(x},x;) and likewise for K |,, K., and K |,
[24].

A valid covariance function in GP should be positive
semidefinite kernel. There are many families of covariance
functions and the choice in general depends on the properties
of the process, which generated the data. Each kernel family
has a set of hyper-parameters 6 controlling the behavior of
the functions generated by the GP. Training of GP involves
choosing 6 and o such that the resulting GP maximizes
marginal likelihood of the data or posterior probability of
hyperparameters.

B. Data Assignment in GP Regression

The Bayesian Committee Machine (BCM) technique [27]
was originally proposed as an approximation technique for re-
ducing computation and speeding up GP regression. It relies on
splitting the training data set into @ sets D = {D1,--- ,Dg},
where D, = (X4, fq), and training () separate estimator from
each set. Under the approximation that

p(Ty,- -

Q
o™, X) = [ p(TyT*, X,), 3)

the predictive density becomes

Q *
Hlp(F Dy)
MD)=Cx "~ —

p ( ‘ ) p(F*)Q_l
where C' is a constant. The above density is generally in-
tractable due to the proportionality constant. However, in the
case of GP estimators, where all the distributions are Gaussian,
the predictive density also becomes Gaussian with covariance
matrix and mean vector

“4)

CIr* D]~ ~ (1 - QK + Z(C Dt (5)

=1
Q . .
E[I*|D] ~ C[I*|D] Y C[*[D]~'E[[*[D]  (6)
i=1

BCM technique is used in our algorithm for selection of
trajectory samples that should contribute to the model of
a trajectory cluster. In the proposed model, each estimator
corresponds to a GP trained by data from the trajectory of
one object. In this way, retraining trajectory cluster model
is avoided when new trajectories are assigned to the cluster.
Instead, an independent GP is built using a new observed
trajectory. Whenever a prediction of flow function values of
a particular cluster is required, GPs correspond to trajectories
in that cluster are combined using BCM technique. Equations
(3 - 6) are good approximations when either the data sets are
unconditionally independent or the number of prediction query
points is large [27]. In our work, both conditions are exploited
where the data partitions correspond to the data collected
from trajectories of independent objects and the number of
evaluation points is equal to the number of particles in a
sequential Monte-Carlo algorithm (see Section VI for more
detail).

C. Online Clustering by Variational Dirichlet Process Mixture

Dirichlet Process (DP), denoted by DP(«, px), is a distri-
bution over discrete probability distributions, which is char-
acterized by a concentration parameter « > 0 and a base
distribution py. The discreteness of distributions drawn from
DP motivates its usage as prior for mixture models with
random and possibly infinite number of mixture components
[20], [28]. Such a model is called Dirichlet Process Mixture
(DPM) model and it has been widely used for Bayesian data
clustering where the number of clusters is not known. Recently
DPM is shown to be effective for learning mixture of latent
functions which are modeled by GP [29], [30].

With a slight abuse of notation let X = {z?}"_, denote a
random variable generated from DPM, then z¢ ~ pr(z°|6;),
where pr is a parametric PDF representing distribution of
mixture components, 6; ~ pg is the parameter of prp and
pc ~ DP(a,py) is a random measure drawn from DP.
Alternatively, using new variables Z = {2}, that indicate
respective mixture component of each sample, the generative
process can be expressed as

xi‘zi7{¢k}zo:1 NpF(mi|¢zi) @)

where ¢y, is the parameter of kth mixture components which
is refered to as atom. Atoms are randomly drawn from DP
base distribution

¢kNpH7 k:172a (8)

The indicator variable is drawn from a categorical distribution
of mixture weights

Zl‘{ﬂ-k}zozl ~ C(lt(ﬂ'l’ﬂ'%...) (9)

where the mixture weights are given by stick-braking process
with parameter « [20].

The main inference task in DPM is to learn number of
mixture components, their parameters, and mixture weights
given a set of observed samples. It involves the computation
of the posterior function

p(pa|X) =Y p(Z|X)plpalX, 2), (10)
Z

which is intractable because the summation over all combi-
nation of partitions Z exponentially grows with n. Conven-
tionally, Markov Chain Monte-Carlo (MCMC) methods such
as Gibbs sampling are used for learning in DPM. However,
practical usage of MCMC methods is limited due to their
slow convergence rate. Thus, techniques based on variational
approximations, which turns the learning problem into opti-
mization problem, have become popular alternative learning
approaches [31], [32].

In this paper the online variational technique proposed in
[22] and [33] is used for incremental learning purposes. It is
assumed that the posterior in (10) can be approximated by the
variational density

= [T

Z i=1

p(pclp,v) p(pc|Z) (1D



JOURNAL OF KIEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014

n .

where [] pi(2") replaces p(Z|X) and p(pi|Z) is a stochastic
i=1

processZ on 0 that is equivalent to generative process

K
Bopr (0) + > Bed (0 — ¢x) (12)
k=1

where (Bo,---,Br) have K + 1-dimensional Dirichlet dis-
tribution Dir(a,ny1, -+ ,nk) and ¢ ~ pi. Here pj is an
independent distribution that approximate the posterior of
kth mixture component. One important implication of this
approximation is its resulting predictive law

a K
pr(0)+>
k=1

E, p(6lpn. )] = —— .

e~
T npk(9)a (13)

which says that new samples from DPM are generated either
from one of K seen components, whose parameter prior
distribution is py(¢) with probability proportional to n; =
Z;’:l p;(k), or from a new component of DP with probability
proportional to «. The approximation enables a recursive
estimation of optimal set of parameters, which minimizes
the Kullback-Leiber divergence between (10) and (11). Let
(p1, -+ ,p;) and (P1, - ,PK) be a set of parameters learned
after processing the (i — 1)th sample, then the optimal new
parameters are

) o w’i—l j;gﬁk(e)pp(xiw)’ k<K,
pz(k) {afng(g)pF($i9), k=K+1,

pu(0) 11 pp(scj|9)pf(k), k< K.
j=1

pu(0)pr(2'0)7 "),

Note that this sequential updating increases the number of
components every time a new sample is processed. However,
this is unnecessary, thus a thresholding mechanism is em-
ployed to introduce a new component only when the probabil-
ity of that component is sufficiently large, i.e. p;(K +1) > e.
The optimal update equation is only applicable when py and
p are conjugate priors of pp. In the non-conjugate cases,
instead of p it is suggested to maintain a MAP point esti-
mates {ék}ff:l which are computed using gradient descent
algorithm.

(14)

Pr(0) o
k=K+1.

IV. PROPOSED ALGORITHM OVERVIEW

In this section the framework of the proposed algorithm
for online learning and classification of trajectory patterns is
introduced. Let x; = [z(t), y(t)]T be the state vector at time
t that indicates the position of an object in 2-D space. Given
small enough time difference J, the dynamics of the object
can be generally represented as

Xt+s = Xt =+ d X fr(Xt,t>, (15)

where f. = [f*, f¥]T is the flow vector for a particular
trajectory pattern indexed by time-invariant variable r. f,.(x, t)
is the sum of noiseless flow function f,.(x,¢) and an in-
dependent stationary zero-mean Gaussian noise. The state

vector sequence forms a Markov process governed by the flow
function

Xe1|Xe, 7yt~ pr(Xeqr|xe, 7, 1) (16)
= N (x¢ + £.(x, 1), Cov[E,. (x4, 1)]).

where it is assumed § = 1 for simplicity. The state vector is
usually unobservable and its information is available through
a dependent measurement vector y; where the dependency is
expressed with a conditional density function

Ye|xe, t ~ pg(ye|xe, t) (17)

Using the state space model a trajectory pattern is charac-
terized by a corresponding flow function and an initial state
distribution pg(x, ) = p(xo|r). In practice, there are a number
of different trajectory patterns r = 1,--- | K, where given
the measurement sequence y;.; and assuming K known flow
functions {f,}’X |, it is possible to calculate an approximation
of the joint posterior p(xi.,7|y1+) of state trajectory and
trajectory pattern index. As described in Section VI this can
be done efficiently using recursive Bayesian filtering.

The block diagram of the proposed algorithm is shown in
Fig. 1. This is a snapshot of the algorithm when ¢ number
of objects have been observed completely, from which K
flow functions are identified and learned. Assume that object
q + 1 has been observed up to time ¢ — 1 and now the
measurement yf“ is being processed. The proposed RBPF
in Section VI at each time instant provides the joint filtered
posterior of the state x; and class r of the object. Then a
memory mechanism stores all the filtered states till the end of
trajectory of object g+ 1 to form the joint posterior of complete
trajectory and class of the object p(x1.T,, ,, r|y(17:+Tt+l), where
T, represents duration of trajectory g. The complete data are
then passed to the clustering and learning algorithm introduced
in Section V, which either assign this new data to one of
already existing K classes or make a new class K + 1 using
DPM rules, then updates the corresponding flow function using
the data observed from object g+-1 according to GP and BCM
equations. In the next two sections the details of algorithms
used in two blocks of tracking/classification (Section VI) and
clustering/learning (Section V) are presented.

V. ONLINE INCREMENTAL CLUSTERING OF
TRAJECTORIES

The proposed method for incremental clustering is described
in this section. Firstly, training independent estimators on in-
dividual trajectories and combining them for forming a single
probabilistic model will be described. Then, the procedure for
incremental updating of this model as new sample trajectory
is observed will be shown.

A. Flow Function Learning

Each observed trajectory y7., of object ¢ bears some infor-

mation about the underlying flow function and can contribute
. _ ~q tq .

to learpmg. The set D, = {xl:Tq,xl:Tq,oq,ﬂq,pq(.)}'ls the

collection of all data gathered from tracking of object g,

pq(k) € {0,1} is the cluster indicator function that is one
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Fig. 1: Block diagram of proposed algorithm. Information
on single arrows is updated with each observation while
information on double arrow is updated with each trajectory.

if the trajectory ¢ belongs to pattern k£ and zero otherwise.
X({;Tq is the estimated state trajectory

X1z, = Exir, I¥iz,] (18)

and )¢<¢1]th is the estimated flow (speed) at each trajectory point

%1 =EXLy [yLs ], (19)

which is calculated point-wise by using filtered state density

)ly1. t41)
//5 (41 — 20))p(XEp 1 1Y 451) dxg:t-ua
(20)
for z direction and likewise for y direction. o, = {0, 0%} is
the mean standard deviation of estimated flow which serves as
noise variance in GP, and 0, = {67, 0} is the MAP parameter
of GP covariance function estimated using data of object g,

0; = argmin -log(p(0l(1 : Ty), X7, 9))  (21)

for z direction and likewise for y direction. The optimization
is done by using probabilities calculated by GP and ¢ is the
parameter of prior density of 6.

Each D, corresponds to a flow estimator learned beased
on the observation of the object g. However, clustering of
trajectories implies that each cluster has a single flow estimator
optimized over all data in the cluster. One can hold a single GP
model for each cluster and recalculates its parameters every
time a trajectory is assigned to that cluster. The complexity
of parameter optimization and GP estimation of this approach
increases with number of trajectories in the cluster. Instead, we
use the approximation of BCM to estimate flow of a cluster
using individual GP estimators built on each trajectory data
Dy.

Let T2, = [fr(x{, 7)o, Fo M) )T be vee-
tors of x component flow function values that are going to be
predicted (for y component the derivation is the same). Using
BCM technique the predictive probability of f‘;m when r = k
is expressed as

Q N N
1;[[ pg(r)p(T; |Dg) + (1 = pg(r))p(T; )]
p(Ty,)e !

(22)

where p(f‘jjm) is the predictive distribution using GP prior
without training data. Since p,(.) is either zero or one and
all distributions are Gaussian, (22) will be a Gaussian with
covariance and mean calculated as

ClLyalr =K"=
ﬂ—%®CT*14+

qu
E[l; ,|r =k =

Q
|rsz
! 24)

where (C[fjw] is the GP prior covariance matrix which is
calculated with maximum prior probability parameters of the
covariance function

( r;c|r_k)

rm'D ] (]‘ - pq(k))(c[f‘:,m]_l

(23)

7 T|D ] IE[f‘:T‘Dq]il

05 = argm;ixp(ﬁ\qb). (25)

In practice it is of interest to have marginal mean ,uq(fl and
variance crﬁ% of function value ff(xﬁi),ty)). These quanti-
ties can be found respectively by taking the ith element of
vector E[f‘j’mhd = k] and the ith diagonal element of matrix

C[T;,|r = k.

B. DPM incremental Update Rule

In the last subsection, a method was described to proba-
bilistically model a group of trajectories characterized by the
same flow function. In this subsection, the aim is to describe
how incremental learning of flow functions {f'r}fle can be
done by observing moving objects over time. The algorithm
is initialized with no cluster, i.e. K = 0, each time new
trajectories are observed, they are assigned to the closest
available clusters if present or new clusters are created when
trajectories are detected as novelties. To this end, the idea of
variational DPM approximation of Section III-C is used and
cluster assignment update equations are defined, which are
adapted to comply with GP model.

Let us assume ¢ trajectories have been observed, which
are grouped into K clusters. While a new trajectory ¢ + 1
is being observed, the posterior cluster probabilities at each
time instance ¢ is computed as

phia(r) o {’7373+1<7‘)C(ﬂ m(t), r<K

(26)
vl (r), r=K+1
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where nd = Z _; pj(r) is the number of trajectories assigned
to cluster r, vq( r) = p(y?,|r) is the observed trajectory
likelihood of the object ¢ up to time ¢ given flow model of
cluster r and ¢(7,my(t)) is a correction term, which will
be introduced in the following paragraphs. In Section VI,
a method is presented for online estimation of the quantity
Phy1(r) at each time instant ¢, jointly with tracking using
particle filtering. The clustering algorithm of this section uses
values at the end of each trajectory, based on the final value of
(26) at the end of trajectory quq“ (.); such a value is chosen
as it represents the best estimate of the class of the object for
clustering purposes.

Comparing (26) with (14) of on-line variational DPM,
here we have two modifications. Firstly, instead of cluster
parameter posterior, complete data likelihood is used, because
the former is not feasible due to non conjugate structure for GP
parameters. Thus, as suggested in [22], MAP point estimates
of DP covariance functions parameters is used to compute the
complete data likelihood and to have approximately the same
effect. The second modification is the use of correction term.
Note that, unlike conventional DPM, where the clusters are
modeled by conventional probability distributions, here cluster
models are GPs, which are distributions on functions. It is not
possible here to compute the likelihood of mixture samples,
because they are infinite dimensional functions. Instead, v, (r)
is evaluated on a finite subset of the function domain occupied
by sample trajectory. The correction term in (26) is deployed
in order to overcome the implications introduced by using GP
as cluster models.

Consider the one-dimensional demonstrative example of
Fig. 2. Suppose that the red trajectory in the lower plot
has been observed first. From the noisy speed points of this
trajectory, which are shown as red dots in upper plot of Fig.
2, a GP has been trained. The mean of the GP predictive
posterior is shown as yellow line and its standard deviation
is shown as gray region. The strip between the two dashed
lines in the upper plot is the prior standard deviation region
of the GP (the prior mean is zero everywhere). Now, suppose
another trajectory depicted with blue dots has been observed.
This trajectory behaves like the first one for ¢ < 40 (z < 1),
but it continues with constant speed to position z = 1.5 where
it starts decelerating.

In the example of Fig. 2, the likelihood of blue trajectory
given the GP trained on the red one is much larger than
the likelihood of that given the prior GP ~2(1) >> 72(2)
(here K + 1 = 2). The reason is that, up to z = 1, the
second trajectory flow almost lies around the mean of first GP.
However, after z = 1.5 the likelihood given the first GP and
the prior GP is almost the same because no data was available
from red trajectory in this domain and the posterior GP simply
converges back to prior GP there. In this case, the DPM
process allocates these two trajectories to the same cluster
because of the high likelihood of first GP. However, generally
it is difficult to say that these two trajectories should belong to
the same cluster. Thus, a correction term was incorporated in
(26) to compensate the situation where there is a lack of data.
In this case, it should be preferred to decrease the assignment
score of evaluated trajectory to a cluster when the trajectory

0.1 T T T

g 0.05
ER |
& —0.05

—0.1 N
~~ 0 N
= 20 .
£ 0 1
= 60 f

\
0.5 1

Position (x)

-0.5 0

Fig. 2: A one dimensional example of trajectories in space-
time and corresponding flow functions (used to motivate
correction term). The red and blue dots are two different
trajectories. Yellow line shows the learned GP flow from red
trajectory while gray area shows uncertainty region.

= 1 ]
g
mn O 5 [ B
=)
T oL | | ; ;
0 0.2 0.4 0.6 0.8 1
my,

Fig. 3: An example of correction function with 7 = 0.3

deviates from the neighborhood of the training data of the
cluster. To this end, the proportion of trajectory where the local
flow given the cluster GP is similar to prior GP is computed,
denoting it as my, € [0, 1]. Then a soft thresholding is used to
gradually decrease the corresponding score as my increases.
The function ¢(7,my) is equal to one when my — 0 and is
equal to zero when my — 1. It is a sigmoid-like function
whose inflection point is 7:

(I+erf(—5y/m

where er f(.) is standard error function. the shape of function
is shown in Fig. 3 for 7 = 0.3.

Finally, the cluster indicator function pg41(.) of Dy41 which
is used in (23) and (24) is calculated as

e(T,myg) = mg —17)))/2, 27

) 1 r = argmaxy pg+1(k)
)=
Pa+1 0 otherwise.

Although this may causes information loss due to changing
the soft clustering of pgy1(.) to hard clustering represented
by pg+1(.), it simplifies the clustering problem and makes the
use of BCM feasible in our problem.

The technique for incremental clustering and learning the
flow functions is summarized in Algorithm 1. The complexity
of the step 1 of the algorithm will be discussed in Section VI.
In step 2 of the algorithm each evaluation of GP prediction
equations is done in cubic order of number of points due
to matrix inversion of (1) and (2). Thus, the step 2 has the
complexity of O(ST?, ;) where S is the number of times the

(28)
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GP prediction equations are evaluated in optimization problem.
In practice, an upper bound is set for S and the gradient
descent algorithm is terminated when the bound is reached.
However, the computational load does not limit online usage of
the algorithm since it is processed at the rate of the appearance
of object (q), which is much lower than ¢ in practice.

Algorithm 1 Incremental trajectory clustering

Input: {D;}2_,, y§+Tl )

Output: {D;}*]!, K
1) apply Algorithm 2 to find pf, (r) for t = Ty1; and
r=1,--- , K+1, )A(z;lﬂ thlj}l_'_l and o411
2) find 0, of (21) by gradient descent algorithm
3) find pg41(r) from (28) for r=1,--- | K +1
4) if popr(K+1)=1then K = K+1and p;(K+1) =0
fort=1,---,q
5) let Dy1 = {7, %

1
xI%, w1 Oat+1: 041, pgr1(1) }

VI. SEQUENTIAL CLASSIFICATION USING
RAO-BLACKWELLIZED PARTICLE FILTER

In the last section, the proposed method for incremental
trajectory clustering was described. In this section, a sequential
Monte-Carlo method based on Rao-Blackwellized Particle
Filter (RBPF) is introduced for joint tracking and classification
purposes. The output of filtering provides necessary informa-
tion for calculation of required quantities used in the clustering
algorithm.

A. Online state and cluster label probability estimation

The RBPF filter is proposed here for tracking and online
estimation of trajectory classes. The technique is inspired
by [23], where it has been used for tracking and parameter
estimation for switching dynamical systems. The main idea is
to marginalize the cluster index variable r during the particle
propagation. The joint filtered density of state and cluster
indicator variable can be factorized as (in this section we use
object index ¢ only whenever is necessary):

p(xl:ta T|y1:t> = p(r‘xl:ta Y1:t)p(X1:t|Y1:t) (29)

the second term of above density is approximated using a
particle filter represented by the set of state trajectory particles
together with their weights {x1 f,wtz) ;—;. The density of r
is a multinomial distribution of the size K 4 1 conditioned on
the state trajectory x;.;. In order to be able to marginalize r,
for every particle ¢ = 1,--- | N the conditional density

¢ (k) = p(x{) yralr = k), k=

is assigned. In other words, a conditional probability of
clusters is estimated using the information of the trajectory
of each particle.

By including the conditional cluster probability to the parti-

: @ @ (N

cle system, the complete particle set {x;;,(; ' (.),w; * };=, for
RBPF is formed. This variable set is updated at every iteration
of the filter and is used to calculate required quantities such

JK+1 0 (30)

as complete data likelihood ~y,(r) of (26), estimated trajectory
X1., estimated flow )Aq .7 and its error variance.

The RBPF algorlthm starts by initializing xé) ~ po(x),
wt = 1/N and Ct ( ) =1/(K+1) fori =1,---,N
and k = 1,--- , K + 1. Each iteration begins with particles
resampling to avoid their degeneration [34]. The resampling
process results in a new set of the particles denoted by
(=9 E9(),a" 1N, However, it unnecessary to perform
resampling at each iteration. It can be done only when the
number of effective particles becomes lower than a pre-defined
threshold.

To propagate the state vector to the next time instant ¢ + 1
for every particle = 1,--- , [N the new state vector is sampled
from a proposal distribution

(@)

X~ pa e %) ye), 31)

Then the updated trajectory of particle 7 is xgli 1 =

{igll,xgﬂl} The cluster posterior probabilities have to be
estimated using all the object history up to the current time.

Consider the factorization of complete conditional data likeli-
hood:

P(X1t41,Y 1:041]7) =

(32)
P(X1:t, Y1t |7)P(Xep1 X, T)D(Y i1 [Xe41)-
The above factorization allows one to update Ct(i)(.) recur-
sively. Let us denote the conditional particle dynamic likeli-
hood by

& (k) = pp(xiy Ixi k. t). (33)
then we have
G k) = ¢V RED (B)g(yiaxipn t+1). (G4)
fori=1,--- , Nandk=1,--- , K+ 1.

Finally, particle importance weights are updated according
to

(4) p(Xit1, Yt+1|i§27 Yi:t) (i)
Wif1 = ; Wi

: (35)
Ds (Xt+1 |)~(§2£7 YI:t)

The values of wt( ") are normalized over all particles after each

iteration as usual in particle filtering.
The state transition probability in (33) as suggested by (16)
is a Gaussian distribution

pr(xeale r) = N 4 [0, w0 diaglo D), o0))

(36)
where MSQ, ,ug z);» o,(»i and a,(fz are marginal mean and variance
of the estimated flow components of cluster r at xgl), which
are extracted from all particles mean and covariance matrix
computed according to (23) and (24) for each cluster. For
cluster K + 1, it is necessary to set p,(K + 1) = 0 for all
trajectories observed before to enforce zero contribution of
training data in the computations of the prior GP. Here BCM
approximation is computed over all particles at the same time;
in this way, the BCM performs better approximations since the
number of evaluation points is large.
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The mixture distribution of conditional transition probability
densities is chosen here as the proposal distribution

K+1

)= Z 5Z(k)Pf(Xt+1|Xt7k)

k=1

DPs (Xt+1 |?~<§117 Vit 37

where ﬁfl(k) is the corrected cluster probability of (26) com-
puted up to time ¢.

B. Calculating required quantities

The variable my(t) in (26) for ¥ = 1,--- , K shows
the proportion of the trajectory where the likelihood of its
dynamics given the kth flow function is approximately equal
to the prior dynamic model (K +1). It is calculated recursively
according to

tmyg(t 5 L
mg(t+1) = my(t) + we(|p(Xer1]%t, k)

— p(Xpq1]xe, K 4 1)])

t+1 (38)

where w,(.) is a window function that is one if its argument is
less than e and zero otherwise. p(xy1|x¢, k) is the estimated
conditional state transition likelihood

N ) .
=W k)
i=1

The observed trajectory likelihood of (37) is computed by
marginalizing the state trajectory from the complete data

likelihood,
Z w® g(

which together with my,(t 4 1) allows us to compute g5t (k)
for using in (37) at the next iteration.

We now turn to the computation of X;.7 and fq:T, which
are used in the training of GP. The expected state trajectory
is simply the weighted average of the particle trajectory,

N
f(l:T = Z w(l)xgl)T7
i=1

which can be calculated at each iteration of the filter or at
the end of trajectory. However, the estimated flow however is
computed at the each filter iteration according to the particle
approximation of (20):

Zzw w9 (x _ng)).

i=1 j=1

ﬁ(XtH |Xt; k (39)

tJrl (40)

(41)

(42)

C. RBPF Algorithm

Algorithm 2 summarizes an iteration of the proposed RBPF
algorithm. In practice, each GP estimator uses a regularly
down-sampled subset of its training points of length 71" for
prediction. In this way, the computational order of the step
2 of the algorithm is O(¢T?N? + gN?), where the cubic
term is from the matrix inversions in (23) and (24) and
quadratic term is from the matrix multiplication in (1) and (2).
However, since only marginal values are needed in (36) all off-
diagonal elements of the covariance matrices can be ignored

before applying BCM equations. This makes computational
complexity of matrix inversions linear with N. Furthermore,
to prevent the scaling of the computation with the number of
observed trajectories ¢, when it gets too large, a random subset
of estimators with a fixed size ¢’ < ¢ can be used, such that, at
least one estimator is available for each class. However, this
is not applied for the results of this paper and all observed
trajectories have been used. Steps 3 and 6 of Algorithm 2
have computational complexity of O(K N) and step 9 is done
in O(N?).

Algorithm 2 An iteration of RB Particle filter
nput: {37, ¢(” ().« H DY, yiTL KL 6
Output:
1) Resampling
2) Calculate the mean and covariance of flow on {xgi) N,
for every trajectory model » = 1,--- , K + 1 from (23)

and (24) .
3) Compute parameters of py (xt+1|x§l), r) for r =
7K+1andi:1 -, N from (36)

4) Sample x!"), for i =1, ,N using (37)

5) Calculate w,ﬁ 9 fori=1,---, N using (35)

6) Calculate(éfl( Yfork=1,--- ,K+landi=1,--- ,N
from (34)

7) Calculate my(t + 1) and v*T1(k) for k = 1,---
from (38) and (40)

8) Calculate p! () r =1,

9) Calculate x; using (42)

K41

, K + 1 from (26)

VII. EVALUATION

In this section, the proposed algorithm is evaluated in
different conditions and for a number of different tasks. Perfor-
mances of the proposed algorithm in clustering trajectory pat-
terns is compared with a baseline spectral clustering algorithm
and more recent mean-shift based Multi-Feature Clustering
[21] and DPM based incremental trajectory clustering of [15].
The behavior of the algorithm is considered for different pa-
rameter sets. The performance of proposed algorithm in online
abnormality detection and activity classification is shown and
compared with GP based supervised algorithm of [4]. Finally,
it is demonstrated that the proposed algorithm improves the
performances of the tracker by learning realistic dynamical
models.

A. Experimental Setup and Data Sets

The proposed algorithm has been tested with different
choices of parameters to evalute its sensitivity to different
configuration. The concentration parameter of DP « is chosen
from {0.2,0.5,2,5} and the dissimilarity threshold 7 from
{0.15,0.25,0.5}. These two parameters mainly control the
sensitivity of the algorithm for making a new clusters when a
deviation occurs. The range of variables is selected such that
resulting number of clusters will be around the actual expected
number (5 to 20 clusters). The number of particles N is equal
to 500 in all experiments. The ¢ parameter in (38) is set to
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1073 to be small enough. The Squared Exponential covariance
function with Automatic Relevance Determination (SE-ARD)
[24] was chosen as the covariance kernel of the GPs:
k(xx' t,t) =
(=2 (—y) (@=t)

2
s exp(= 2e0:  2efw  2efue

(43)

where e?i=, ¢ and e?* are length-scale parameters for each
coordinate respectively. 62 is the variance parameter of the
kernel, which is fixed in the experiments for every dataset. This
parameter mainly affects the uncertainty about flow values in
GP and will therefore affect span of the sampling in RBPF.
As general rule, higher values should be preferred when the
speed of objects in video are higher and more diverse. Normal
distributions with the unit variance and mean chosen from
{1,2} is used as the prior of 6, 0, and 6} in the MAP
estimation of kernel hyper-parameters. In the implementation,
the GPML library! is used for training and evaluation of the
GP. Using this kernel, the prior flow function becomes a zero-
mean white noise process with variance 62 at every position
and time.

Three datasets are used for the evaluation of the proposed
algorithm (Fig. 4). The Highway (Fig. 4b) dataset provided
by authors of [21]* consists of 134 trajectories in 10 classes
and the Traffic (Fig. 4c) dataset provided by authors of [15]
consists of 1500 trajectories in 15 classes. These two datasets
are used in the clustering performance evaluation. The PDTV
dataset [35] consists of 51 trajectories in 16 classes (Fig. 4a).
The PDTV dataset is used for demonstrating clustering per-
formance as well as classification and abnormality detection.
The value of kernel variance parameter 62 in PDTV and Traffic
is chosen from {15,30} while in Highway larger values are
chosen from {90, 120} since there is higher variability in the
speed of the objects on image plane.

The state and observation vector are the position of ob-
jects in the image plane. A Gaussian measurement model
is assumed in (17) with the covariance matrix equal to the
covariance of the object’s foreground pixel positions. The ob-
servation vector y; is extracted from each frame by computing
the mean of the foreground pixel positions associated to the
object. The segmented foreground pixels of each object is
available in PDTV dataset and they are used as inputs. In
the Traffic and Highway datasets only the trajectory points
are available. Thus, trajectory points are regarded as y; and a
synthetic Gaussian noise is applied to the model (17).

B. Baseline Algorithms and Evaluation Criterion

The spectral clustering algorithm [36] is proposed in [14] for
unsupervised trajectory clustering. The Longest Common Sub-
sequence (LCSS) [37] and Dynamic Time Wrapping (DTW)
[38] are used as distance measures for spectral clustering.
Both distance measures are able to eliminate the effect of
misalignment and different length of trajectories. Unlike our
method, the spectral clustering algorithm is neither incremental

Thttp://www.gaussianprocess.org/gpml/code/matlab/doc/
2available from ftp://motinas.elec.qmul.ac.uk/pub/code/nadeem/QMUL_
MFTC_software.zip

(a) PDTV (c) Traffic

Fig. 4: Datasets used in evaluation. Colors show ground-truth
classes of trajectories.

nor it is able to estimate the number of clusters. In addition,
the proposed algorithm is compared with the Multi-Feature
Trajectory Clustering (MFTC) algorithm [21] and DPM trajec-
tory clustering algorithm [15], which are able to estimate the
number of clusters. The former method is a batch clustering
algorithm while the latter can be employed in batch and
incremental modes.

The Accuracy of clustering is defined as the ratio of the
maximum number of trajectories with the same ground-truth
label in the cluster to the total number of trajectories in that
cluster. The overall Accuracy is then the mean of the accuracy
of all clusters [15]. The clustering Accuracy is the measure
that shows how well the algorithm is able to build clusters of
similar trajectories. It does not take into account the number
of actual clusters. When the number of clusters is equal to the
samples, the value of Accuracy is maximum. A more accurate
criteria is the Adjusted Mutual Information (AMI) [39] that
compares the result of clustering with the ground-truth, while
eliminating the effect of random matching and the different
permutation of class labels. The metric has values in range
[0 1]: values close to zero mean two assignments are highly
independent and values close to one indicate agreement in
them. The AMI, unlike accuracy, is sensitive to the number of
clustering labels.

In online classification and abnormality detection tasks,
the proposed method is compared with the Gaussian Process
Regression of Flow (GPRF) algorithm [4]. However, since
GPREF is a supervised algorithm, the class labels of trajectories
is used for its training purpose. For fairness of comparison,
the GPRF is trained with ¢ trajectories in the dataset and
then applies the classification on ¢ + 1 because the proposed
algorithm uses only information from first ¢ trajectories for
processing (¢ + 1)th trajectory. Average per-class precision
and recall [40] is used for online classification comparison
and Receiver Operation Curve (ROC) is used for comparing
abnormality detection performances.

C. Clustering Results

The effect of parameter’s choice on the clustering algorithm
is shown in the Fig. 5 for the PDTV Dataset. The figure depicts
the number of learned clusters versus the DP concentration
parameter « for different choices of dissimilarity threshold
7. The clustering behavior highly adapts with the choice of
7, while its sensitivity to « is less significant. The optimum
choice of these parameters, however, depends on the recording
environment. This is more evident when the cluster growing
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Fig. 5: Number of learned clusters K versus the DP concen-
tration parameter o and dissimilarity threshold 7.
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Fig. 6: Cluster growing rate versus the number of objects
observed. Red line is the ground-truth. Horizontal axis is the
number of trajectories observed (with fixed same ordering in
all tests and ground-truth). Dashed line is the mean of results
and gray region is the standard deviation of results.

rate is compared with the number of observed objects in the
video shown in Fig. 6. An appropriate choice of parameters
as in Fig. 6a results in the same growing rate as ground-truth.
On the other hand, choosing larger 7 and smaller « reduces
the sensitivity of the algorithm to outliers and its tendency to
merge more similar trajectories in the same group.

The performances of the clustering algorithm are shown and
compared with other algorithms in Fig. 7 for PDTV and Fig.
8 for Highway dataset. The horizontal lines in these figures
are the number of resulting clusters that is learned in the
proposed algorithm and MFTC, while it should be set a priori
in the spectral clustering algorithm. For MFTC algorithm the
code provided by the authors of [21] is used. As depicted in
Fig. 7 the proposed algorithm is more accurate than spectral
clustering algorithm and it is comparable to MFTC algorithm
in PDTV dataset. In the Highway dataset experiment (Fig. 8),
our algorithm outperforms others in higher number of clusters.

0.9 T T T T T T
’ = DTW/Spectral w—fFe LCSS/Spectral
0.8 R

Proposed

AMI

K (Number of learned clusters)

Fig. 7: Comparison of proposed algorithm clustering perfor-
mance on PDTV dataset.
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Proposed MFTC {

0.6 -

AMI

0.4

Fig. 8: Comparison of proposed algorithm clustering perfor-
mance on Highway dataset.

In this dataset, MTFC does not result in less than 10 clusters
with all parameter tunings. However, in the Highway dataset,
with a lower number of clusters, the parametric spectral
algorithm provides better performance than the proposed.

For comparison with DPM [15], the proposed algorithm is
applied on the Traffic dataset and the result is compared with
the results from [15] for the same dataset. As shown in Table
I1, the proposed algorithm outperforms the DPM by more than
10% Accuracy in its incremental mode and more than 7%
Accuracy in its batch mode. The AMI for the DPM algorithm
is not presented in Table II, because the AMI measure is
not used in [15] for performance validation. The number of
resulting clusters for the proposed algorithm was 19 for the
values in the Table II, while for DPM the number of resulting
clusters is unknown.

A typical qualitative result for PDTV dataset is shown in
Fig. 9. The 16 ground-truth classes are shown in Fig. 9a and
the resulting 19 clusters are shown in Fig. 9b. First type of
clustering error occurs when the algorithm puts trajectories
from different classes in one cluster as in cluster 10 in Fig.

TABLE II: Comparison of Incremental Clustering Accuracy
on Traffic Dataset

Method DPM Batch [15] DPM Inceremental [15]  Proposed
Accuracy 90.0%" 85.1%" 97.6%
AMI - - 0.72

* values are taken from [15]
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(b) Resulting Clusters

Fig. 9: Trajectory clusters in the PDTV dataset. (Color hue
represents the time from blue to red.)

9b. In this particular case, the two trajectories correspond to
cars that stop for long time behind light and then move away.
In this case, since trajectories are similar for long time and
then starts diverging for short duration, the deviation was not
enough to stimulate creation of new cluster. The second type
of error is when the algorithm splits trajectories of the same
class into separate clusters. This happened for classes 2, 3 and
7 of ground-truth Fig. 9a. Class 2 is split into clusters 2 and 9
in Fig. 9b. Class 3 is split into clusters 3 and 7 in Fig. 9b. Class
7 is split into clusters 8 and 12 in Fig. 9b. However, careful
examination shows that split trajectories are slightly different
with each other either in terms of speed (as in cluster 8 and
12 in Fig. 9b) or shape and position of trajectory (as in 3 and
7 in Fig. 9b).
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Fig. 10: Abnormality detection performance of the proposed
algorithm in ROC space.

D. Abnormality Detection Results

Abnormality in this paper is defined as a behavior (trajec-
tory) pattern that has not been observed and learned before.
This definition complies with [4] where the model is trained
in a supervised way using normal trajectories, then it is
used to detect abnormalities, However, abnormality may also
be defined as detecting outliers in a dataset like in [17]
where sparse trajectories are detected as abnormal. The former
definition is closely related to the incremental clustering ability
of the proposed algorithm, where generation of a new cluster
corresponds to identify that the received trajectory does not
match to any pattern learned up to that processing moment.
This can be done online by considering the posterior class
probability from equation (26) since p,,;(K + 1) equals the
probability that the trajectory belongs to an unseen class.

However, in practice, not all trajectories that are detected
as new classes belong to semantically abnormal behavior (e.g.
abnormal traffic action). Thus, a post processing is required
to filter semantically abnormal trajectories and prevent the
system from learning them (learning new clusters is default
in proposed method). This can be done by the intervention of
a user or an automated system to either act when an event
of making a new cluster (abnormality detection) is generated
or by revising the learned clusters later. In this section, the
abnormality detection performance of the proposed method is
presented as detecting the event that a trajectory belongs to
a new cluster. This is equivalent to suppose that all learned
trajectory patterns up to a moment are normal then testing
abnormality for a new incoming trajectories.

The performance of the proposed algorithm in detecting
anomalies in the PDTV dataset is shown in ROC (Receiver
Operating Curve) of Fig. 10 and compared [4]. The points
in Fig. 10 are achieved with different parameter sets in our
algorithm and different abnormality detection thresholds in [4].
The results show that the proposed algorithm is able to achieve
higher true-positive rate with lower false-positive rate than the
algorithm of [4].

E. Sequential Classification Results

Calculating the maximum of pf (k) from (26) at each
time instant provides a classification result for the trajectory
being processed. The classification accuracy improves as more
observations are made from the object. Fig. 11 provides three
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Fig. 11: Online trajectory classification of trajectories number
(a) 2, (b) 3 and (c) 45.

examples of online classification for the trajectories of objects
numbers 2, 3 and 45 from the PDTV dataset respectively,
which corresponds to class 1, 2 and 1 of Fig. 9a . The average
P4 (k) at each time instant over all experiments is shown for
three particular objects. Object number 2 corresponds to the
second trajectory received in the algorithm (¢ = 2). From Fig.
11a it is evident that it was first classified as class 1 due to
the initial similarity between class 1 and class 2 trajectories
(Fig. 9a). As time passes and it starts to deviate from class 1
pattern, it is identified as a new class K + 1, where K = 1
in this case. In Fig. 11b, apart from a short initial ambiguity,
object number 3 is identified correctly as class 1. Fig. 11c is an
example of an initial mis-classification where object number
45, which is from class 2, is initially classified to class 1. This
is again due to the high similarity between the initial shapes of
class 1 and 2. However, as soon as the discriminative feature
of the trajectory is observed, the probability of the true class
increases until it is very close to one.

The online classification performance of the proposed al-
gorithm is compared with the supervised GPRF algorithm [4]
in Fig. 12. The average per-class precision and recall [40] for
the classification results is shown when different portions of
trajectories are observed from the beginning. Considering the

g
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Fig. 12: Comparison of online classification performances.
Precision and recall of the proposed algorithm is shown with
the solid blue and red lines respectively. Precision and recall
of the GPRF [4] is shown with the dashed blue and red lines
respectively.

fact that the classification error in the proposed unsupervised
algorithm may also be caused by the error in trajectory clus-
tering, the proposed algorithm still gives comparable results
to supervised GPRF algorithm where more than 60% of a
trajectory is observed.

F. Tracking Improvement by Learning Flows

Object tracking is an integrated part of the proposed algo-
rithm, which is realized using the RBPF. In traditional particle
filter tracking algorithms, the dynamical model (16) has to be
specified beforehand and they are usually linear and stationary
models. In contrast, in the proposed model, dynamics of
objects are learned and updated as flow function by each
trajectory the system receives. For a given environment, the
incremental clustering algorithm gradually builds a library of
realistic flow models that are used in the particle filter. This
improves the system’s tracking ability with each experience.
This effect is shown using two examples in Fig. 13, the
average variance of the filtered state over a whole trajectory
is provided versus the number trajectories from the same
class observed by the system beforehand. Results shown in
Fig. 13 correspond to the first and second trajectory classes
in Fig. 9a. In both cases of Fig. 13, the tracking variance
is higher when the trajectory class is observed for the first
time. However, the performance improves (tracking variance
decrease) as more instances of same trajectory pattern is seen,
which allows the system to learn better flow function models
for the corresponding trajectory pattern.

G. Computation Time

The algorithm is implemented in MATLAB® R2014b with
unoptimized code®. Computation time of the algorithm on
an Intel® Core™ i7 3.40GHz CPU and 12.0GB memory
is presented in Fig. 14 as the frame-per-second (inverse of
computation time of each frame) versus number of clusters.

3code is available from http:/www.isip40.it/codes/dpgpf_activity_mining.
zip
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Fig. 13: Performance of tracking an object performing trajec-

tory class 1 (blue) and 2 (red) versus the number of instances
observed from the same trajectory class before.
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Fig. 14: Computation Time

VIII. CONCLUSION

A method for mining activity patterns from stream of
surveillance video is presented in this paper. Advanced
Bayesian nonparametric techniques of Dirichlet process mix-
ture and Gaussian process are employed for incremental
clustering and learning of trajectory patterns characterized by
non-linear time-variant flow functions. A Rao-blakwellized
particle filter is proposed for tracking and online classification
of trajectory pattern and abnormality detection. Experimental
results demonstrated the superior performance of the proposed
algorithm as compared to state-of-the-art trajectory clustering
algorithms. Moreover, the online classification and abnormal-
ity detection performances are presented for real video data.
Furthermore, it is suggested that the proposed framework can
be employed also to improve tracking performances as it is
able to identify real dynamics of objects by learning them
from experience.

In this paper, objects are assumed as points where their
state is defined as their position in the image plane. A future
direction of this work is to extend it for understanding more
complicated trajectories of extended and group objects where
higher dimensional state vectors would be used. Another
future work is to use the idea of the proposed framework
to understand interactions between objects in the scene. In
this case, the dynamics of the objects are influenced by the
environmental situation and the presence of other objects
around.
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